Unsupervised Biomedical Named Entity Recognition

نویسندگان

  • Omid Ghiasvand
  • Rohit J. Kate
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning support vector machines for biomedical named entity recognition

We explore the use of Support Vector Machines (SVMs) for biomedical named entity recognition. To make the SVM training with the available largest corpus – the GENIA corpus – tractable, we propose to split the non-entity class into sub-classes, using part-of-speech information. In addition, we explore new features such as word cache and the states of an HMM trained by unsupervised learning. Expe...

متن کامل

Unsupervised biomedical named entity recognition: Experiments with clinical and biological texts

Named entity recognition is a crucial component of biomedical natural language processing, enabling information extraction and ultimately reasoning over and knowledge discovery from text. Much progress has been made in the design of rule-based and supervised tools, but they are often genre and task dependent. As such, adapting them to different genres of text or identifying new types of entitie...

متن کامل

Biomedical Named Entity Recognition Based on Feature Selection and Word Representations

As an important task in biomedical text mining, biomedical named entity recognition (Bio-NER) has increasingly attracted researchers attention. Various methods have been employed to solve this problem and achieved desirable results on the annotated datasets. In this work, we focus on the feature set to reduce the training cost by feature selection and template optimization. Also, we integrate t...

متن کامل

Biomedical entity extraction using machine-learning based approaches

In this paper, we present the experiments we made to process entities from the biomedical domain. Depending on the task to process, we used two distinct supervised machine-learning techniques: Conditional Random Fields to perform both named entity identification and classification, and Maximum Entropy to classify given entities. Machine-learning approaches outperformed knowledge-based technique...

متن کامل

Combining Open-domain and Biomedical Knowledge for Topic Recognition in Consumer Health Questions

Determining the main topics in consumer health questions is a crucial step in their processing as it allows narrowing the search space to a specific semantic context. In this paper we propose a topic recognition approach based on biomedical and open-domain knowledge bases. In the first step of our method, we recognize named entities in consumer health questions using an unsupervised method that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018